Probability

- 1. Probability that a new record will be set up = $1 \left(1 \frac{1}{4}\right)\left(1 \frac{2}{7}\right)\left(1 \frac{1}{3}\right)\left(1 \frac{2}{5}\right)\left(1 \frac{1}{2}\right) = \frac{25}{28}$
- 2. Probability of A to win a game = 2/3 Probability of B to win a game = 1/3 Pr (A wins at least 3 games in a set of five) = ${}_{5}C_{5}\left(\frac{2}{3}\right)^{5} + {}_{5}C_{4}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right) + {}_{5}C_{3}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)^{2} = \frac{192}{\underline{243}}$ Pr (A wins 5 games before B wins two) = Pr(A wins 5 games) + Pr(A wins 4 games) + Pr(A wins 3 games in the first 4 games) = ${}_{5}C_{5}\left(\frac{2}{3}\right)^{5} + {}_{5}C_{4}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right) + {}_{4}C_{3}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)^{1} = \frac{48}{\underline{81}}$

3. (a) Pr(2 appears every time) =
$$\left(\frac{1}{6}\right)^3 = \frac{1}{\underline{7776}}$$

(b) Pr(2 appears exactly 4 times) =
$${}_{5}C_{4}\left(\frac{1}{6}\right)^{4}\left(\frac{5}{6}\right) = \frac{25}{\underline{7776}}$$

(c) Pr(2 appears at least 3 times) =
$$\frac{1}{7776} + \frac{25}{7776} + {}_{5}C_{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{2} = \frac{276}{\underline{7776}}$$

4. The total number of ways of taking any number of balls :

 $T = C(n,1) + C(n,2) + C(n,3) + \ldots + C(n,n)$

The total number of ways of taking even number of balls :

$$E = C(n,2) + C(n,4) + C(n,6) + \dots + C(n,\lfloor n/2 \rfloor \times 2)$$

where [a] is defined as the biggest integer less than or equal to a.

Since
$$(1+x)^n = \sum_{i=0}^n C(n,i)x_i$$
,
Putting $n = 1$, $2^n = (1+1)^n = \sum_{i=0}^n C(n,i)$ (1)
 $\therefore T = 2^n - 1$
Putting $n = -1$, $0^n = (1-1)^n = \sum_{i=0}^n (-1)^n C(n,i)$ (2)
 $\{(1) + (2)\}/2$, $\therefore E = 2^{n-1} - 1$
Pr(an even number of balls are taken) $= \frac{E}{T} = \frac{2^{n-1} - 1}{2^n - 1}$

5. The probability of obtaining 1 in not more than n trials

$$=\frac{1}{6} + \left(\frac{1}{6}\right)\left(\frac{5}{6}\right) + \left(\frac{1}{6}\right)\left(\frac{5}{6}\right)^{2} + \dots + \left(\frac{1}{6}\right)\left(\frac{5}{6}\right)^{n-1} = 1 - \left(\frac{5}{6}\right)^{n} > \frac{1}{2} \implies n > \log\frac{1}{2}/\log\frac{5}{6} \approx 3.8$$

Therefore the number of times the die must be thrown = 4

6. Pr(A obtains 1 first) = Pr(B obtains 1 first | A loses 1st game) = Pr (B obtains 1 first \cap A loses 1st game) / Pr (A loses 1st game) = Pr(B obtains 1 first) / [5/6](1) But Pr(A obtains 1 first) + Pr(B obtains 1 first) = 1(2) Solving (1) and (2), Pr(A obtains 1 first) = $\frac{6}{\underline{11}}$ Pr(B obtains 1 first) = $\frac{5}{\underline{11}}$

7. If the balls drawn cannot be replaced, $Pr(A \text{ draws the white ball first}) = \frac{3}{5} + \left(\frac{2}{5}\right)\left(\frac{1}{4}\right) = \frac{7}{\underline{10}}$

Pr(B draws the white ball first) = $1 - \frac{7}{10} = \frac{3}{\underline{10}}$

If the balls drawn can be replaced,

Pr(A draws the white ball first) =
$$\frac{3}{5} + \left(\frac{2}{5}\right)\left(\frac{2}{5}\right)\left(\frac{3}{5}\right) + \left(\frac{2}{5}\right)\left(\frac{2}{5}\right)\left(\frac{2}{5}\right)\left(\frac{3}{5}\right) + \dots$$
 (Infinite G.P.) = $\frac{5}{\underline{7}}$
Pr(B draws the white ball first) = $1 - \frac{5}{7} = \frac{2}{\underline{7}}$

8. Pr(the ball is white)

= Pr(the ball is white \cap urn A is chosen) + Pr(the ball is white \cap urn B is chosen) = Pr(urn A is chosen) Pr(the ball is white | urn A) + Pr(urn B is chosen) Pr(the ball is white | urn B) = $\left(\frac{1}{2}\right)\left(\frac{3}{10}\right) + \left(\frac{1}{2}\right)\left(\frac{4}{12}\right) = \frac{19}{\underline{60}}$

9. (a) The sample space, S, is {(1,1), (1,2), ...(1,6), (2,1),(2,2),...,(2,6),.....(6,1),(6,2),...,(6,6)} N(S) = 36 The event space, E₁, is {(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6)} \therefore N(E₁) = 10 Pr(the sum is at least 9) = $\frac{N(E_1)}{N(S)} = \frac{10}{36} = \frac{5}{\underline{18}}$

(b) The event space, E_2 , is {(1.2),(2,1), (2,3),(3,2),(3,4),(4,3),(4,5),(5,4),(5,6),(6,5),(1,3),(3,1),(2,4),(4,2),(3,5),(5,3),(4,6),(6,4)} N(E) = 18

Pr(the difference of the numbers in two dices is 1 or 2) = $\frac{N(E_2)}{N(S)} = \frac{18}{36} = \frac{1}{\underline{2}}$

10. The probability = $\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{6}\right) = \frac{1}{\underline{24}}$

11. The probability =
$${}_{5}C_{1}\left(\frac{1}{4}\right)^{4}\left(\frac{1}{2}\right) = \frac{5}{\underline{32}}$$

12. If the last defective is on the 7th testing, the first defective must be among the first six testing. Therefore the number of ways in which the last defective is on the 7th testing = 6 Total number of arrangements in which the bad light bulbs is on any testing = ${}_{10}C_2 = 45$

The probability = $\frac{6}{45} = \frac{2}{\underline{15}}$

13. The total number of ways in choosing 5 prizes from n tickets = ${}_{n}C_{5}$. The number of ways in choosing 5 prizes in which the 2 tickets are not prizes = ${}_{n-2}C_{5}$. Therefore Pr(win at least one prize) = $1 - Pr(win no prize) = 1 - \frac{{}_{n-2}C_{5}}{{}_{n}C_{5}} = \frac{10n - 30}{\underline{n^{2} - n}}$

14. Let the tossing be denoted by (X|Y). Total number in the sample space = 2⁴ = 16 Event space in which Y – X will be less than 1 = {(HH|HH),(HT|HT),(TH|TH),(HT|TH),(HT|TT),(HH|T

Therefore the probability that Y - X will be less than $1 = \frac{11}{\underline{16}}$

Conditional Probability

15. Let M = the person is a man, W = the person is a woman, X = the person has a ticket P(M) = 0.6, P(W) = 0.4, P(X|M) = 0.8, P(X|W) = 0.75 By Bayes' Theorem,

$$P(M | X) = \frac{P(M)P(X | M)}{P(M)P(X | M) + P(W)P(X | W)} = \frac{0.6 \times 0.8}{0.6 \times 0.8 + 0.4 \times 0.75} = \frac{8}{\underline{13}}$$
$$P(W|X) = 1 - \frac{8}{13} = \frac{5}{\underline{13}}$$

16. Let A = the die falls "1" or "2" = 1^{st} urn is chosen B = the die falls "3" = 2^{nd} urn is chosen P(A) = 2/3, P(B) = 1/3, P(X|A) = 1/5, P(X|B) = 3/5

By Bayes' Theorem,

$$P(A | X) = \frac{P(A)P(X | A)}{P(A)P(X | A) + P(B)P(X | B)} = \frac{(2/3)(1/5)}{(2/3)(1/5) + (1/3)(3/5)} = \frac{2}{5}$$

17. (a) Let B = 5 cards are black

A = at least 4 cards are black

$$P(B) = \frac{{}_{26}C_5}{{}_{52}C_5} \qquad P(A) = \frac{{}_{26}C_5 + {}_{26}C_4 \times {}_{26}C_1}{{}_{52}C_5}, \qquad P(B \mid A) = \frac{P(B \cap A)}{P(A)} = \frac{P(B)}{P(A)} = \frac{11}{\underline{76}}$$

(b) Let B = 5 cards are black

A = at least 4 spades

$$P(B) = \frac{{}_{26}C_5}{{}_{52}C_5} \qquad P(A) = \frac{{}_{13}C_5 + {}_{13}C_4 \times {}_{13}C_1}{{}_{52}C_5}, P(B \mid A) = \frac{P(B \cap A)}{P(A)} = \frac{P(B)}{P(A)} = \frac{37}{\underline{102}}$$

18. Let $A_i = Box$ i is chosen X = a gold coin is chosen $P(A_i) = 1/3, P(X|A_1) = 1, P(X|A_2) = 0, P(X|A_3) = 1/2,$ By Bayes' Theorem, $P(A_1 | X) = \frac{P(A_1)P(X | A_1)}{\sum_{i=1}^{3} P(A_i)P(X | A_i)} = \frac{(1)(1/3)}{(1)(1/3) + (0)(1/3) + (1/2)(1/3)} = \frac{2}{3}$

19. Let A = the first ball is white

B = the second ball is white
P(A∩B) = P(A)P(B|A) = (2/4)(1/4) = 1/8
P(B) = P(A)P(B|A) +P(A')P(B|A') = (2/4)(1/4) + (2/4)(3/4) = 1/2
Therefore,
$$P(A | B) = \frac{P(A \cap B)}{P(B)} = \frac{1/8}{1/2} = \frac{1}{4}$$

- 20. Two dices are rolled and one or more of the faces is 6. The sample space, $S = \{ (1,6), (2,6), (3,6), (4,6), (5,6), (6,6), (6,1), (6,2), (6,3), (6,4), (6,5) \}$ The event space in which the sum of the faces exceeds 8 is: $E = = \{ (3,6), (4,6), (5,6), (6,6), (6,3), (6,4), (6,5) \}$ Therefore the probability $= \frac{N(E)}{N(S)} = \frac{7}{11}$
- **21.** Let K = the card is King

F = the card is a Face card P(K | F) = $\frac{P(K)}{P(F)} = \frac{4}{12} = \frac{1}{\underline{3}}$